Filtreler
Natural products are the future of anticancer therapy: Preclinical and clinical advancements of viscum album phytometabolites

Attar, Rukset | Tabassum, S. | Fayyaz, S. | Ahmad, M.S. | Nogueira, D.R. | Yaylim, I. | Ismail, M.

Article | 2015 | Cellular and Molecular Biology61 ( 6 ) , pp.62 - 68

Cancer is a multifaceted and genomically complex disease. Research over the years has gradually provided a near complete resolution of cancer landscape and it is now known that genetic/epigenetic mutations, inactivation of tumor suppressors, Overexpression of oncogenes, spatio-temporally dysregulated intracellular signaling cascades, epithelial to mesenchymal transition (EMT), metastasis and loss of apoptosis are some of the most extensively studied biological mechanisms that underpin cancer development and progression. Increasingly it is being realized that current therapeutic interventions are becoming ineffective because of tumor . . . heterogeneity and rapidly developing resistance against drugs. Considerable biological activities exerted by bioactive ingredients isolated from natural sources have revolutionized the field of natural product chemistry and rapid developments in preclinical studies are encouraging. Viscum album has emerged as a deeply studied natural source with substantial and multifaceted biological activities. In this review we have attempted to provide recent breakthroughs in existing scientific literature with emphasis on targeting of protein network in cancer cells. We partition this review into different sections, highlighting latest information from cell culture studies, preclinical and clinically oriented studies. We summarized how bioactive ingredients of Viscum album modulated extrinsic and intrinsic pathways in cancer cells. However, surprisingly, none of the study reported stimulatory effects on TRAIL receptors. The review provided in-depth analysis of how Viscum album modulated Endoplasmic Reticulum Stress in cancer cells and how bioactive chemicals tactfully targeted cytoskeletal machinery in cancer cells as evidenced by cell culture studies. It is noteworthy that Viscum album has entered into various phases of clinical trials, however, there are still knowledge gaps in our understanding regarding how various bioactive constituents of Viscum album modulate intracellular signaling cascades in cancer. Better and deeper comprehension oncogenic signaling cascades will prove to be helful in getting a step closer to individualized medicine. © 2015 Daha fazlası Daha az

Regulation of signal transduction cascades by Pterostilbenes in different cancers: Is it a death knell for oncogenic pathways

Butt, G. | Attar, Rukset | Tabassum, S. | Aras, A. | Qadir, M.I. | Ozbey, U. | Farooqi, A.A.

Review | 2017 | Cellular and Molecular Biology63 ( 12 ) , pp.5 - 10

Interdisciplinary research has revolutionized the field of medicine and we have witnessed exponential increase in the high-impact research in past few decades. However, the road to this burgeoning research field is obstacle-ridden because of intratumor heterogeneity, loss of apoptosis and dysregulation of spatio-temporally controlled signaling pathways. Ground-breaking findings obtained through genetic, genomic and proteomic studies have considerably improved our concepts related to the complexity of protein network and excitingly, discovery of miRNAs has added another layer of intricacy to quantitatively regulated gene networks. In . . . this review, we chronicle the milestone achievements and discuss how Pterostilbenes effectively regulated different cellular pathways. We have provided detailed mechanistic insights related to regulation of JAK-STAT signaling, Notch pathway, Wnt mediated intracellular signaling by pterostilbene. Underlying mechanisms about regulation of PI3K/AKT and MAPK pathways by pterostilbene in different cancers. Regulation of Metastasis-associated protein 1 (MTA1) proteins and Human telomerase reverse transcriptase (hTERT) in cancer cells by pterostilbene. Pterostilbene has also been reported to modulate the expression of various oncogenic and tumor suppressor microRNAs in cancer cells. Better and sharper comprehension of the concepts associated with the modes of action of pterostilbene in different cancers will be useful in identification of cancers which can be efficiently targeted by pterostilbene. © 2017 by the C.M.B. Association Daha fazlası Daha az

Drugs from marine sources: Modulation of TRAIL induced apoptosis in cancer cells

Farooqi, A.A. | Attar, Rukset | Gasparri, M.L.

Article | 2014 | Asian Pacific Journal of Cancer Prevention15 ( 20 ) , pp.9045 - 9047

There have been overwhelming advances in molecular oncology and data obtained through high-throughput technologies have started to shed light on wide ranging molecular mechanisms that underpin cancer progression. Increasingly it is being realized that marine micro-organisms and the biodiversity of plankton are rich sources of various anticancer compounds. Marine derived compounds play major roles in inducing apoptosis in cancer cells. More importantly, various agents have been noted to enhance TRAIL induced apoptosis in cancer cells by functionalizing intrinsic and extrinsic pathways. In this commentary, a list of marine derived com . . .pounds reported to induce apoptosis is discussed Daha fazlası Daha az

TRAIL and Bortezomib: Killing cancer with two stones

Qureshi, M.Z. | Romero, M.A. | Attar, Rukset | Javed, Z. | Farooqi, A.A.

Article | 2015 | Asian Pacific Journal of Cancer Prevention16 ( 4 ) , pp.1671 - 1674

Cancer genomics and proteomics have undergone considerable broadening in the past decades and increasingly it is being realized that solid/liquid phase microarrays and high-throughput resequencing have provided platforms to improve our existing knowledge of determinants of cancer development, progression and survival. Loss of apoptosis is a widely and deeply studied process and different approaches are being used to restore apoptosis in resistant cancer phenotype. Modulating the balance between pro-apoptotic and anti-apoptotic proteins is essential to induce apoptosis. It is becoming more understood that pharmacological inhibition o . . .f the proteasome might prove to be an effective option in improving TRAIL induced apoptosis in cancer cells. Keeping in view rapidly accumulating evidence of carcinogenesis, metastasis, resistance against wide ranging therapeutics and loss of apoptosis, better knowledge regarding tumor suppressors, oncogenes, pro-apoptotic and anti-apotptic proteins will be helpful in translating the findings from benchtop to bedside Daha fazlası Daha az

Natural product mediated regulation of death receptors and intracellular machinery: Fresh from the pipeline about TRAIL-mediated signaling and natural TRAIL sensitizers

Shahwar, D. | Iqbal, M.J. | Nisa, M.-U. | Todorovska, M. | Attar, Rukset | Sabitaliyevich, U.Y. | Xu, B.

Review | 2019 | International Journal of Molecular Sciences20 ( 8 ) , pp.1671 - 1674

Rapidly developing resistance against different therapeutics is a major stumbling block in the standardization of therapy. Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-mediated signaling has emerged as one of the most highly and extensively studied signal transduction cascade that induces apoptosis in cancer cells. Rapidly emerging cutting-edge research has helped us to develop a better understanding of the signaling machinery involved in inducing apoptotic cell death. However, excitingly, cancer cells develop resistance against TRAIL-induced apoptosis through different modes. Loss of cell surface expression . . . of TRAIL receptors and imbalance of stoichiometric ratios of pro- and anti-apoptotic proteins play instrumental roles in rewiring the machinery of cancer cells to develop resistance against TRAIL-based therapeutics. Natural products have shown excellent potential to restore apoptosis in TRAIL-resistant cancer cell lines and in mice xenografted with TRAIL-resistant cancer cells. Significantly refined information has previously been added and continues to enrich the existing pool of knowledge related to the natural-product-mediated upregulation of death receptors, rebalancing of pro- and anti-apoptotic proteins in different cancers. In this mini review, we will set spotlight on the most recently published high-impact research related to underlying mechanisms of TRAIL resistance and how these deregulations can be targeted by natural products to restore TRAIL-mediated apoptosis in different cancers. © 2019 by the authors. Licensee MDPI, Basel, Switzerland Daha fazlası Daha az

How sesquiterpenes modulate signaling cascades in cancers

Jabeen, S. | Qureshi, M.Z. | Attar, Rukset | Aslam, A. | Kanwal, S. | Khalid, S. | Ismail, M.

Review | 2016 | Cellular and Molecular Biology62 ( 7 ) , pp.110 - 117

Data obtained from high-throughput technologies has started to shed light on the interplay between signal transduction cascades and chromatin modifications thus adding another layer of complexity to the already complex regulation of the protein network. Based on the insights gleaned from almost a decade of research, it has now been convincingly revealed that sesquiterpenes effectively modulated different intracellular signaling cascades in different cancers. In this review we summarize how sesquiterpenes mediated Wnt, Shh, Notch and TRAIL induced signaling cascades. © 2016 by the C.M.B. Association. All rights reserved.

6698 sayılı Kişisel Verilerin Korunması Kanunu kapsamında yükümlülüklerimiz ve çerez politikamız hakkında bilgi sahibi olmak için alttaki bağlantıyı kullanabilirsiniz.

creativecommons
Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.
Platforms