Filtreler
Filtreler
Bulunan: 21 Adet 0.001 sn
Koleksiyon [4]
Tam Metin [1]
Yazar [20]
Yayın Türü [4]
Konu Başlıkları [20]
Yayın Tarihi [8]
Dergi Adı [9]
Yayıncı [8]
Dil [1]
Yazar Departmanı [1]
Recent updates on true potential of an anesthetic agent as a regulator of cell signaling pathways and non-coding RNAs in different cancers: Focusing on the brighter side of propofol

Farooqi, A.A. | Adylova, A. | Sabitaliyevich, U.Y. | Attar, Rukset | Sohail, M.I. | Yilmaz, S.

Review | 2020 | Gene737

There has always been a quest to search for synthetic and natural compounds having premium pharmacological properties and minimum off-target and/or side effects. Therefore, in accordance with this approach, scientists have given special attention to the molecules having remarkable ability to target oncogenic protein network, restore drug sensitivity and induce apoptosis in cancer cells. The mechanisms through which general anesthetics modulated wide-ranging deregulated cell signaling pathways and non-coding RNAs remained unclear. However, rapidly accumulating experimentally verified evidence has started to resolve this long-standing . . . mystery and a knowledge about these important molecular targets has surfaced and how these drugs act at the molecular level is becoming more understandable. In this review we have given special attention to available evidence related to ability of propofol to modulate Wnt/ß-catenin, JAK/STAT and mTOR-driven pathway. Excitingly, great strides have been made in sharpening our concepts related to potential of propofol to modulate non-coding RNAs in different cancers. Collectively, these latest findings offer interesting, unexplored opportunities to target deregulated signaling pathways to induce apoptosis in drug-resistant cancers. © 2020 Elsevier B.V Daha fazlası Daha az

Tudor tells about new twists in the story tale of SMURFs

Qureshi, M.Z. | Jabeen, S. | Butt, G. | Aslam, A. | Naqvi, S.K.-U.-H. | Attar, Rukset | Farooqi, A.A.

Review | 2016 | Cellular and Molecular Biology62 ( 5 ) , pp.38 - 43

Smad ubiquitin regulatory factors (SMURFS) belong to the HECT- family of E3 ubiquitin ligases. This family has two members, SMURF1 and SMURF2. SMURFs have emerged as well studied negative regulators of TGF induced intracellular signaling. However, increasingly it is being realized that SMURFs tactfully modulate an array of proteins in different cancers. This review sets spotlight on how SMURF1 and SMURF2 communicate with effectors of different signaling pathways during the multistep progression to cancer. We also summarize how microRNAs (miRNAs) effectively control SMURFs in different cancers. Role of SMURFs is context dependent in . . .different cancers and better concepts related to miRNA regulation of SMURFs in different stages and steps of cancer will be helpful in efficient translation of laboratory findings to clinic. © 2016 by the C.M.B. Association. All rights reserved Daha fazlası Daha az

Maslinic acid as an effective anticancer agent

Lin, X. | Ozbey, U. | Sabitaliyevich, U.Y. | Attar, Rukset | Ozcelik, B. | Zhang, Y. | Farooqi, A.A.

Article | 2018 | Cellular and Molecular Biology64 ( 10 ) , pp.87 - 91

Maslinic acid (2?,3ß-dihydroxyolean-12-en-28-oic acid) is a naturally occurring pentacyclic triterpenic compound. Maslinic acid is gradually gaining attention as an excellent pharmacologically active product because of its premium biological properties. In this review we will focus on chemopreventive properties of Maslinic acid against different cancers. Seemingly, available data is limited and we have yet to unravel how Maslinic acid therapeutically targeted oncogenic cell signal transduction cascades in different cancers. Moreover, there are visible knowledge gaps about the ability of Maslinic acid to modulate oncogenic and tumor . . .suppressor microRNAs in various cancers. © 2018 by the C.M.B. Association Daha fazlası Daha az

The effects of PON1 gene Q192R variant on the development of uterine leiomyoma in Turkish patients

Attar, Rukset | Atasoy, H. | Inal-Gültekin, G. | Timirci-Kahraman, Ö. | Güleç-Yilmaz, S. | Dalan, A.B. | İşbir, Turgay

Article | 2015 | In Vivo29 ( 2 ) , pp.243 - 246

Aim: This study aimed to analyze the relation between uterine leiomyoma (ULM) patients and p.Q192R polymorphism. Materials and Methods: ULM patients (n=76) and healthy women (n=103) were recruited from the Yeditepe University, Department of Gynecology and Obstetrics. The genotype and allele distribution of p.Q192R was analyzed by polymerase chain reaction and restriction fragment length polymorphism methods. Genotype and allele frequencies between study groups were calculated by the chisquare (?2) and Fischer's exact test. Results: The frequency of the B allele was lower in patients (p<0.001) and the AB genotype showed a decrease . . .d risk for ULM development (p<0.001). The variation was unrelated to ULM size and number. There was no significant difference between p.Q192R genotype frequencies and fibroid size and number. Conclusion: The heterogeneous AB genotype of PON1 p.Q192R variation could be recognized as a low-risk parameter for the development of ULM in Turkish women. © 2015, International Institute of Anticancer Research. All rights reserved Daha fazlası Daha az

Piperlongumine as anticancer agent: The story so far about killing many birds with one stone

Farooqi, A.A. | Attar, Rukset | Yaylim, I. | Qureshi, M.Z. | Todorovska, M. | Karatoprak, G.S. | Lin, X.

Article | 2018 | Cellular and Molecular Biology64 ( 11 ) , pp.102 - 107

Piperlongumine is a biologically and pharmacologically active constituent of the plant Piper longum. This compound is gradually gaining attention because of its ability to inhibit/prevent different cancers. Modern era of molecular oncology is incomplete without ground-breaking discoveries made in the field of cell signaling pathways. High-throughput technologies have considerably improved our understanding about wide ranging signal transduction cascades which play crucial role in cancer development and progression. It is exciting to note that piperlongumine has been shown to pleiotropically modulate different oncogenic signaling pat . . .hways. We partition this multi-component review into discrete sections and categorically summarize key findings related to excellent ability of piperlongumine to therapeutically target JAK-STAT, NF-kB and PI3K/AKT/mTOR pathways. We also set spotlight on regulation of TRAIL pathway and autophagy by piperlongumine in different cancers. On the basis of the current understanding of piperlongumine, molecular biologists and pharmacologists will develop the next generation of translational studies, which will prove to be helpful in improving the clinical outcome and getting a step closer to personalized medicine. © 2018 by the C.M.B. Association. All rights reserved Daha fazlası Daha az

Natural products are the future of anticancer therapy: Preclinical and clinical advancements of viscum album phytometabolites

Attar, Rukset | Tabassum, S. | Fayyaz, S. | Ahmad, M.S. | Nogueira, D.R. | Yaylim, I. | Ismail, M.

Article | 2015 | Cellular and Molecular Biology61 ( 6 ) , pp.62 - 68

Cancer is a multifaceted and genomically complex disease. Research over the years has gradually provided a near complete resolution of cancer landscape and it is now known that genetic/epigenetic mutations, inactivation of tumor suppressors, Overexpression of oncogenes, spatio-temporally dysregulated intracellular signaling cascades, epithelial to mesenchymal transition (EMT), metastasis and loss of apoptosis are some of the most extensively studied biological mechanisms that underpin cancer development and progression. Increasingly it is being realized that current therapeutic interventions are becoming ineffective because of tumor . . . heterogeneity and rapidly developing resistance against drugs. Considerable biological activities exerted by bioactive ingredients isolated from natural sources have revolutionized the field of natural product chemistry and rapid developments in preclinical studies are encouraging. Viscum album has emerged as a deeply studied natural source with substantial and multifaceted biological activities. In this review we have attempted to provide recent breakthroughs in existing scientific literature with emphasis on targeting of protein network in cancer cells. We partition this review into different sections, highlighting latest information from cell culture studies, preclinical and clinically oriented studies. We summarized how bioactive ingredients of Viscum album modulated extrinsic and intrinsic pathways in cancer cells. However, surprisingly, none of the study reported stimulatory effects on TRAIL receptors. The review provided in-depth analysis of how Viscum album modulated Endoplasmic Reticulum Stress in cancer cells and how bioactive chemicals tactfully targeted cytoskeletal machinery in cancer cells as evidenced by cell culture studies. It is noteworthy that Viscum album has entered into various phases of clinical trials, however, there are still knowledge gaps in our understanding regarding how various bioactive constituents of Viscum album modulate intracellular signaling cascades in cancer. Better and deeper comprehension oncogenic signaling cascades will prove to be helful in getting a step closer to individualized medicine. © 2015 Daha fazlası Daha az

Interplay of long non-coding RNAs and TGF/SMAD signaling in different cancers

Farooqi, A.A. | Attar, Rukset | Qureshi, M.Z. | Fayyaz, S. | Sohail, M.I. | Sabitaliyevich, U.Y. | Alaaeddine, N.

Article | 2018 | Cellular and Molecular Biology64 ( 15 ) , pp.1 - 6

Based on the exciting insights gleaned from decades of ground-breaking research, it has become evident that deregulated signaling pathways play instrumental role in cancer development and progression. Interestingly discovery of non-coding RNAs has revolutionized our understanding related to transcription, post-transcription and translation. Modern era has witnessed landmark discoveries in the field of molecular cancer and non-coding RNA biology has undergone tremendous broadening. There has been an exponential growth in the list of publications related to non-coding RNAs and overwhelmingly increasing classes of non-coding RNAs are a . . .dding new layers of complexity to already complicated nature of cancer. Regulation of TGF/SMAD signaling by miRNAs and LncRNAs has opened new horizons for therapeutic targeting of TGF/SMAD pathway. In this review we have set spotlight on central role of LncRNAs in modulation of TGF/ SMAD pathway. Major proportion of the available evidence is underlining positive role of LncRNAs in contextual regulation of TGF/SMAD pathway. LncRNAs are vital to these regulatory networks because they provide a background support to make the TGF/SMAD mediated intracellular signaling more smooth or make transduction cascade more flexible in response to cues from extracellular environment. Therefore, in accordance with this notion, MALAT1, OIP5-AS1, MIR100HG, HOTAIR, ANRIL, PVT1, AFAP1-AS1, SPRY4-IT, ZEB2NAT, TUG1 and Lnc-SNHG1 have been reported to positively regulate TGF/SMAD signaling. In this review, we have focused on the regulation of TGF/SMAD signaling by LncRNAs and how these non-coding RNAs can be therapeutically exploited. Short-interfering RNA (siRNA) and natural products are currently being tested for efficacy against different LncRNAs. Nanotechnological strategies to efficiently deliver LncRNA-targeting siRNAs are also currently being investigated in different cancers. © 2018 by the C.M.B. Association. All rights reserved Daha fazlası Daha az

Regulation of signal transduction cascades by Pterostilbenes in different cancers: Is it a death knell for oncogenic pathways

Butt, G. | Attar, Rukset | Tabassum, S. | Aras, A. | Qadir, M.I. | Ozbey, U. | Farooqi, A.A.

Review | 2017 | Cellular and Molecular Biology63 ( 12 ) , pp.5 - 10

Interdisciplinary research has revolutionized the field of medicine and we have witnessed exponential increase in the high-impact research in past few decades. However, the road to this burgeoning research field is obstacle-ridden because of intratumor heterogeneity, loss of apoptosis and dysregulation of spatio-temporally controlled signaling pathways. Ground-breaking findings obtained through genetic, genomic and proteomic studies have considerably improved our concepts related to the complexity of protein network and excitingly, discovery of miRNAs has added another layer of intricacy to quantitatively regulated gene networks. In . . . this review, we chronicle the milestone achievements and discuss how Pterostilbenes effectively regulated different cellular pathways. We have provided detailed mechanistic insights related to regulation of JAK-STAT signaling, Notch pathway, Wnt mediated intracellular signaling by pterostilbene. Underlying mechanisms about regulation of PI3K/AKT and MAPK pathways by pterostilbene in different cancers. Regulation of Metastasis-associated protein 1 (MTA1) proteins and Human telomerase reverse transcriptase (hTERT) in cancer cells by pterostilbene. Pterostilbene has also been reported to modulate the expression of various oncogenic and tumor suppressor microRNAs in cancer cells. Better and sharper comprehension of the concepts associated with the modes of action of pterostilbene in different cancers will be useful in identification of cancers which can be efficiently targeted by pterostilbene. © 2017 by the C.M.B. Association Daha fazlası Daha az

MicroRNA-143 as a new weapon against cancer: overview of the mechanistic insights and long non-coding RNA mediated regulation of miRNA-143 in different cancers

Farooqi, A.A. | Qureshi, M.Z. | Attar, Rukset | Alhewairini, S.S. | Fayyaz, S. | Sabitaliyevich, U.Y. | Alaaeddine, N.

Review | 2019 | Cellular and molecular biology (Noisy-le-Grand, France)65 ( 6 ) , pp.1 - 5

Central dogma of molecular biology, a term coined by Francis Crick in 1958 was considered to be the cornerstone of molecular biology unless molecular biologists challenged the idea after ground-breaking discovery of non-coding RNAs. Discovery of microRNAs marked a new era and revolutionized our understanding related to puzzling mysteries about intermediate steps between transcription and translation. Technological advancements have spawned a multitude of platforms for profiling of long-noncoding RNAs and miRNAs in different cancers. Detailed investigation of mRNA targets of miRNAs has enabled high-order analyses of interconnected ne . . .tworks and revealed affected pathways in different cancers. miR-143 has emerged as a multi-talented tumor suppressor microRNA having considerable ability to inhibit and prevent cancer via regulation of myriad of oncogenes. In this review, we will summarize most recent evidence related to characteristically unique ability of miR-143 to target different oncogenic mRNAs in different cancers. We will also comprehensively discuss how scientists have identified multiple long non-coding RNAs reportedly involved in promoting the expression of oncogenes by interfering with miR-143 mediated targeting of these oncogenes. Because of excellent ability of miR-143 to effectively target oncogenic mRNAs, researchers have started to focus on use of miR-143 mimics to restore expression of miR-143 in various cancers Daha fazlası Daha az

From endometriosis to cancer: Spotlight on intracellular signaling cascades and Micro RNAs

Halim, T.A. | Attar, Rukset | Donfrancesco, C. | Farooqi, A.A. | Zaman, F.

Book Part | 2018 | Recent Trends in Cancer Biology: Spotlight on Signaling Cascades and MicroRNAs: Cell Signaling Pathways and MicroRNAs in Cancer Biology , pp.1 - 10

Increasingly sophisticated information has started to shed light on essential role of signal transduction cascades in endometriosis and how these pathways promote transformations from benign to premalignant endometriosis. It is becoming progressively more understandable that genetic/epigenetic mutations, inactivation of tumor suppressors, aberrant expression of different microRNAs play decisive role in malignant transformation of endometriosis. © Springer International Publishing AG 2018.

Targeting of BCR-ABL: Lessons learned from BCR-ABL inhibition

Lin, X. | Qureshi, M.Z. | Attar, Rukset | Khalid, S. | Tahir, F. | Yaqub, A. | Ismail, M.

Review | 2016 | Cellular and Molecular Biology62 ( 12 ) , pp.129 - 137

In 1960 researchers reported that balanced translocation between chromosomes 22 and 9 resulted in the generation of Philadelphia chromosome. This breakthrough revolutionized our knowledge related to leukemia biology and contemporary studies revealed that chromosomal translocation resulted in the fusion between the 5' segment of BCR gene and 3' segment of the ABL gene to form BCR/ABL fusion gene. Research over the years has progressively and systematically improved our understanding of the genetic and proteomic basis of Leukemia. Genome-wide profiling studies, including genome sequencing and microarray analysis, have helped us in ide . . .ntification of different intracellular signaling cascades that are frequently mutated in Leukemia. We partition this multi-component review into different sections related to biochemical characteristics of BCR-ABL+ cells, underlying mechanism of generation of mutations and crosstalk of BCR-ABL with various intracellular signaling cascades. We also summarize how BCR-ABL encoding mRNA is negatively regulated by different miRNAs and the strategies which are currently being used to effectively target BCR-ABL protein. We also provide an overview of the natural products which have been used for targeting of BCR-ABL protein. Better understanding of the protein network of Philadelphia positive leukemic cells will prove to be helpful in getting a step closer to personalized medicine Daha fazlası Daha az

Regulation of signaling pathways by Ampelopsin (Dihydromyricetin) in different cancers: exploring the highways and byways less travelled

Fayyaz, S. | Qureshi, M.Z. | Alhewairini, S.S. | Avnioglu, S. | Attar, Rukset | Sabitaliyevich, U.Y. | Pawlak-Adamska, E.

Article | 2019 | Cellular and molecular biology (Noisy-le-Grand, France)65 ( 7 ) , pp.15 - 20

Ampelopsin or Dihydromyricetin is gradually emerging as a high-quality natural product because of its ability to modulate wide-ranging signaling pathways. Ampelopsin (Dihydromyricetin) has been reported to effectively modulate growth factor receptor (VEGFR2 and PDGFRß) mediated signaling,  TRAIL/TRAIL-R pathway, JAK/STAT and mTOR-driven signaling in different cancers. Ampelopsin (Dihydromyricetin) has also been shown to exert inhibitory effects on the versatile regulators which trigger EMT (Epithelial-to-Mesenchymal Transition). Findings obtained from in-vitro studies are encouraging and there is a need to comprehensively analyze ho . . .w Ampelopsin (Dihydromyricetin) inhibits tumor growth in different cancer models. Better knowledge of efficacy of Ampelopsin (Dihydromyricetin) in tumor bearing mice will be helpful in maximizing its translational potential Daha fazlası Daha az

6698 sayılı Kişisel Verilerin Korunması Kanunu kapsamında yükümlülüklerimiz ve çerez politikamız hakkında bilgi sahibi olmak için alttaki bağlantıyı kullanabilirsiniz.

creativecommons
Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.
Platforms