Filtreler
Filtreler
Bulunan: 13 Adet 0.001 sn
Koleksiyon [4]
Tam Metin [1]
Yazar [20]
Yayın Türü [4]
Konu Başlıkları [20]
Yayın Tarihi [7]
Dergi Adı [6]
Yayıncı [6]
Dil [1]
Yazar Departmanı [1]
Citrus fruits and their bioactive ingredients: Leading four horsemen from front

Farooqi, A.A. | Wang, Z. | Hasnain, S. | Attar, Rukset | Aslam, A. | Mansoor, Q. | Ismail, M.

Note | 2015 | Asian Pacific Journal of Cancer Prevention16 ( 6 ) , pp.2575 - 2580

Cancer is a multifaceted and genomically complex disease and rapidly accumulating high impact research is deepening our understanding related to the mechanisms underlying cancer development, progression and resistance to therapeutics. Increasingly it is being realized that genetic/epigenetic mutations, inactivation of tumor suppressor genes, overexpression of oncogenes, deregulation of intracellular signaling cascades and loss of apoptosis are some of the extensively studied aspects. Confluence of information suggested that rapidly developing resistance to therapeutics is adding another layer of complexity and overwhelmingly increas . . .ing preclinical studies are identifying different natural agents with efficacy and minimal off-target effects. We partition this multi-component review into citrus fruits and their bioactive ingredients mediating rebalancing of pro- and anti-apoptotic proteins to induce apoptosis in resistant cancer cells. We also discuss how oncogenic protein networks are targeted in cancer cells and how these findings may be verified in preclinical studies Daha fazlası Daha az

Regulation of signal transduction cascades by Pterostilbenes in different cancers: Is it a death knell for oncogenic pathways

Butt, G. | Attar, Rukset | Tabassum, S. | Aras, A. | Qadir, M.I. | Ozbey, U. | Farooqi, A.A.

Review | 2017 | Cellular and Molecular Biology63 ( 12 ) , pp.5 - 10

Interdisciplinary research has revolutionized the field of medicine and we have witnessed exponential increase in the high-impact research in past few decades. However, the road to this burgeoning research field is obstacle-ridden because of intratumor heterogeneity, loss of apoptosis and dysregulation of spatio-temporally controlled signaling pathways. Ground-breaking findings obtained through genetic, genomic and proteomic studies have considerably improved our concepts related to the complexity of protein network and excitingly, discovery of miRNAs has added another layer of intricacy to quantitatively regulated gene networks. In . . . this review, we chronicle the milestone achievements and discuss how Pterostilbenes effectively regulated different cellular pathways. We have provided detailed mechanistic insights related to regulation of JAK-STAT signaling, Notch pathway, Wnt mediated intracellular signaling by pterostilbene. Underlying mechanisms about regulation of PI3K/AKT and MAPK pathways by pterostilbene in different cancers. Regulation of Metastasis-associated protein 1 (MTA1) proteins and Human telomerase reverse transcriptase (hTERT) in cancer cells by pterostilbene. Pterostilbene has also been reported to modulate the expression of various oncogenic and tumor suppressor microRNAs in cancer cells. Better and sharper comprehension of the concepts associated with the modes of action of pterostilbene in different cancers will be useful in identification of cancers which can be efficiently targeted by pterostilbene. © 2017 by the C.M.B. Association Daha fazlası Daha az

Interplay of long non-coding RNAs and TGF/SMAD signaling in different cancers

Farooqi, A.A. | Attar, Rukset | Qureshi, M.Z. | Fayyaz, S. | Sohail, M.I. | Sabitaliyevich, U.Y. | Alaaeddine, N.

Article | 2018 | Cellular and Molecular Biology64 ( 15 ) , pp.1 - 6

Based on the exciting insights gleaned from decades of ground-breaking research, it has become evident that deregulated signaling pathways play instrumental role in cancer development and progression. Interestingly discovery of non-coding RNAs has revolutionized our understanding related to transcription, post-transcription and translation. Modern era has witnessed landmark discoveries in the field of molecular cancer and non-coding RNA biology has undergone tremendous broadening. There has been an exponential growth in the list of publications related to non-coding RNAs and overwhelmingly increasing classes of non-coding RNAs are a . . .dding new layers of complexity to already complicated nature of cancer. Regulation of TGF/SMAD signaling by miRNAs and LncRNAs has opened new horizons for therapeutic targeting of TGF/SMAD pathway. In this review we have set spotlight on central role of LncRNAs in modulation of TGF/ SMAD pathway. Major proportion of the available evidence is underlining positive role of LncRNAs in contextual regulation of TGF/SMAD pathway. LncRNAs are vital to these regulatory networks because they provide a background support to make the TGF/SMAD mediated intracellular signaling more smooth or make transduction cascade more flexible in response to cues from extracellular environment. Therefore, in accordance with this notion, MALAT1, OIP5-AS1, MIR100HG, HOTAIR, ANRIL, PVT1, AFAP1-AS1, SPRY4-IT, ZEB2NAT, TUG1 and Lnc-SNHG1 have been reported to positively regulate TGF/SMAD signaling. In this review, we have focused on the regulation of TGF/SMAD signaling by LncRNAs and how these non-coding RNAs can be therapeutically exploited. Short-interfering RNA (siRNA) and natural products are currently being tested for efficacy against different LncRNAs. Nanotechnological strategies to efficiently deliver LncRNA-targeting siRNAs are also currently being investigated in different cancers. © 2018 by the C.M.B. Association. All rights reserved Daha fazlası Daha az

Recent updates on true potential of an anesthetic agent as a regulator of cell signaling pathways and non-coding RNAs in different cancers: Focusing on the brighter side of propofol

Farooqi, A.A. | Adylova, A. | Sabitaliyevich, U.Y. | Attar, Rukset | Sohail, M.I. | Yilmaz, S.

Review | 2020 | Gene737 , pp.1 - 6

There has always been a quest to search for synthetic and natural compounds having premium pharmacological properties and minimum off-target and/or side effects. Therefore, in accordance with this approach, scientists have given special attention to the molecules having remarkable ability to target oncogenic protein network, restore drug sensitivity and induce apoptosis in cancer cells. The mechanisms through which general anesthetics modulated wide-ranging deregulated cell signaling pathways and non-coding RNAs remained unclear. However, rapidly accumulating experimentally verified evidence has started to resolve this long-standing . . . mystery and a knowledge about these important molecular targets has surfaced and how these drugs act at the molecular level is becoming more understandable. In this review we have given special attention to available evidence related to ability of propofol to modulate Wnt/ß-catenin, JAK/STAT and mTOR-driven pathway. Excitingly, great strides have been made in sharpening our concepts related to potential of propofol to modulate non-coding RNAs in different cancers. Collectively, these latest findings offer interesting, unexplored opportunities to target deregulated signaling pathways to induce apoptosis in drug-resistant cancers. © 2020 Elsevier B.V Daha fazlası Daha az

Piperlongumine as anticancer agent: The story so far about killing many birds with one stone

Farooqi, A.A. | Attar, Rukset | Yaylim, I. | Qureshi, M.Z. | Todorovska, M. | Karatoprak, G.S. | Lin, X.

Article | 2018 | Cellular and Molecular Biology64 ( 11 ) , pp.102 - 107

Piperlongumine is a biologically and pharmacologically active constituent of the plant Piper longum. This compound is gradually gaining attention because of its ability to inhibit/prevent different cancers. Modern era of molecular oncology is incomplete without ground-breaking discoveries made in the field of cell signaling pathways. High-throughput technologies have considerably improved our understanding about wide ranging signal transduction cascades which play crucial role in cancer development and progression. It is exciting to note that piperlongumine has been shown to pleiotropically modulate different oncogenic signaling pat . . .hways. We partition this multi-component review into discrete sections and categorically summarize key findings related to excellent ability of piperlongumine to therapeutically target JAK-STAT, NF-kB and PI3K/AKT/mTOR pathways. We also set spotlight on regulation of TRAIL pathway and autophagy by piperlongumine in different cancers. On the basis of the current understanding of piperlongumine, molecular biologists and pharmacologists will develop the next generation of translational studies, which will prove to be helpful in improving the clinical outcome and getting a step closer to personalized medicine. © 2018 by the C.M.B. Association. All rights reserved Daha fazlası Daha az

TRAIL and Bortezomib: Killing cancer with two stones

Qureshi, M.Z. | Romero, M.A. | Attar, Rukset | Javed, Z. | Farooqi, A.A.

Article | 2015 | Asian Pacific Journal of Cancer Prevention16 ( 4 ) , pp.1671 - 1674

Cancer genomics and proteomics have undergone considerable broadening in the past decades and increasingly it is being realized that solid/liquid phase microarrays and high-throughput resequencing have provided platforms to improve our existing knowledge of determinants of cancer development, progression and survival. Loss of apoptosis is a widely and deeply studied process and different approaches are being used to restore apoptosis in resistant cancer phenotype. Modulating the balance between pro-apoptotic and anti-apoptotic proteins is essential to induce apoptosis. It is becoming more understood that pharmacological inhibition o . . .f the proteasome might prove to be an effective option in improving TRAIL induced apoptosis in cancer cells. Keeping in view rapidly accumulating evidence of carcinogenesis, metastasis, resistance against wide ranging therapeutics and loss of apoptosis, better knowledge regarding tumor suppressors, oncogenes, pro-apoptotic and anti-apotptic proteins will be helpful in translating the findings from benchtop to bedside Daha fazlası Daha az

Maslinic acid as an effective anticancer agent

Lin, X. | Ozbey, U. | Sabitaliyevich, U.Y. | Attar, Rukset | Ozcelik, B. | Zhang, Y. | Farooqi, A.A.

Article | 2018 | Cellular and Molecular Biology64 ( 10 ) , pp.87 - 91

Maslinic acid (2?,3ß-dihydroxyolean-12-en-28-oic acid) is a naturally occurring pentacyclic triterpenic compound. Maslinic acid is gradually gaining attention as an excellent pharmacologically active product because of its premium biological properties. In this review we will focus on chemopreventive properties of Maslinic acid against different cancers. Seemingly, available data is limited and we have yet to unravel how Maslinic acid therapeutically targeted oncogenic cell signal transduction cascades in different cancers. Moreover, there are visible knowledge gaps about the ability of Maslinic acid to modulate oncogenic and tumor . . .suppressor microRNAs in various cancers. © 2018 by the C.M.B. Association Daha fazlası Daha az

From endometriosis to cancer: Spotlight on intracellular signaling cascades and Micro RNAs

Halim, T.A. | Attar, Rukset | Donfrancesco, C. | Farooqi, A.A. | Zaman, F.

Book Part | 2018 | Recent Trends in Cancer Biology: Spotlight on Signaling Cascades and MicroRNAs: Cell Signaling Pathways and MicroRNAs in Cancer Biology , pp.1 - 10

Increasingly sophisticated information has started to shed light on essential role of signal transduction cascades in endometriosis and how these pathways promote transformations from benign to premalignant endometriosis. It is becoming progressively more understandable that genetic/epigenetic mutations, inactivation of tumor suppressors, aberrant expression of different microRNAs play decisive role in malignant transformation of endometriosis. © Springer International Publishing AG 2018.

NEDD4 Family of E3 Ubiquitin Ligases in Breast Cancer: Spotlight on SMURFs, WWPs and NEDD4

Butt, G. | Yaylim, I. | Attar, Rukset | Aras, A. | Romero, M.A. | Qureshi, M.Z. | Farooqi, A.A.

Book Part | 2019 | Advances in Experimental Medicine and Biology1152 , pp.365 - 375

Massively parallel sequencing, genomic and proteomic technologies have provided near complete resolution of signaling landscape of breast cancer (BCa). NEDD4 family of E3-ubiquitin ligases comprises a large family of proteins particularly, SMURFs (SMURF1, SMURF2), WWPs and NEDD4 which are ideal candidates for targeted therapy. However, it is becoming progressively more understandable that SMURFs and NEDD4 have “split-personalities”. These molecules behave dualistically in breast cancer and future studies must converge on detailed identification of context specific role of these proteins in BCa. Finally, we provide scattered clues of . . . regulation of SMURF2 by oncogenic miRNAs, specifically considering longstanding questions related to regulation of SMURF1 and WWPs by miRNAs in BCa. SMURFS, WWPs and NEDD4 are versatile regulators and represent a fast-growing field in cancer research and better understanding of the underlying mechanisms will be helpful in transition of our knowledge from a segmented view to a more conceptual continuum. © 2019, Springer Nature Switzerland AG Daha fazlası Daha az

MicroRNA-143 as a new weapon against cancer: overview of the mechanistic insights and long non-coding RNA mediated regulation of miRNA-143 in different cancers

Farooqi, A.A. | Qureshi, M.Z. | Attar, Rukset | Alhewairini, S.S. | Fayyaz, S. | Sabitaliyevich, U.Y. | Alaaeddine, N.

Review | 2019 | Cellular and molecular biology (Noisy-le-Grand, France)65 ( 6 ) , pp.1 - 5

Central dogma of molecular biology, a term coined by Francis Crick in 1958 was considered to be the cornerstone of molecular biology unless molecular biologists challenged the idea after ground-breaking discovery of non-coding RNAs. Discovery of microRNAs marked a new era and revolutionized our understanding related to puzzling mysteries about intermediate steps between transcription and translation. Technological advancements have spawned a multitude of platforms for profiling of long-noncoding RNAs and miRNAs in different cancers. Detailed investigation of mRNA targets of miRNAs has enabled high-order analyses of interconnected ne . . .tworks and revealed affected pathways in different cancers. miR-143 has emerged as a multi-talented tumor suppressor microRNA having considerable ability to inhibit and prevent cancer via regulation of myriad of oncogenes. In this review, we will summarize most recent evidence related to characteristically unique ability of miR-143 to target different oncogenic mRNAs in different cancers. We will also comprehensively discuss how scientists have identified multiple long non-coding RNAs reportedly involved in promoting the expression of oncogenes by interfering with miR-143 mediated targeting of these oncogenes. Because of excellent ability of miR-143 to effectively target oncogenic mRNAs, researchers have started to focus on use of miR-143 mimics to restore expression of miR-143 in various cancers Daha fazlası Daha az

Drugs from marine sources: Modulation of TRAIL induced apoptosis in cancer cells

Farooqi, A.A. | Attar, Rukset | Gasparri, M.L.

Article | 2014 | Asian Pacific Journal of Cancer Prevention15 ( 20 ) , pp.9045 - 9047

There have been overwhelming advances in molecular oncology and data obtained through high-throughput technologies have started to shed light on wide ranging molecular mechanisms that underpin cancer progression. Increasingly it is being realized that marine micro-organisms and the biodiversity of plankton are rich sources of various anticancer compounds. Marine derived compounds play major roles in inducing apoptosis in cancer cells. More importantly, various agents have been noted to enhance TRAIL induced apoptosis in cancer cells by functionalizing intrinsic and extrinsic pathways. In this commentary, a list of marine derived com . . .pounds reported to induce apoptosis is discussed Daha fazlası Daha az

Regulation of Kisspeptin mediated signaling by non-coding RNAs in different cancers: the beginning of a new era

Farooqi, A.A. | Attar, Rukset | Bageshlooyafshar, B. | Sabitaliyevich, U.Y. | Nurmurzayevich, S.B. | Yelekenova, A.B. | Gormus, U.

Review | 2019 | Cellular and molecular biology (Noisy-le-Grand, France)65 ( 3 ) , pp.72 - 75

Kisspeptin-driven intracellular signaling has captured enormous attention because of its central role in cancer onset and progression. Wealth of information has helped us to develop a better understanding of the critical roles of Kisspeptin-mediated signaling in different cancers. However, astonishingly, we have not yet drilled down deep into the mysterious aspects associated with non-coding RNA mediated regulation of Kisspeptin-driven signaling. Therefore, in this mini-review, we will comprehensively analyze available evidence related to miRNAs and long non-coding RNAs (LncRNAs) and their ability to modulate Kisspeptin-mediated sig . . .naling. There are visible knowledge gaps about interplay between non-coding RNAs and Kisspeptin-mediated signaling. It will be appropriate to say that we have just started to scratch the surface of an entirely new regulatory layer of Kisspeptin-mediated transduction cascade. Mechanistically, it has been revealed that inhibition of Kisspeptin mediated signaling activated and stimulated the entry of NF?B into the nucleus to stimulate expression of proteins which can sequentially inactivate tumor suppressor miRNAs. miRNAs have also an instrumental role in regulation of proteins which post-translationally modify and inhibit KISS1 expression. It is becoming progressively more understandable that LncRNAs act as miRNA sponges and protect oncogenic mRNAs. However, these facets are also incompletely investigated. Identification of LncRNAs which interfere with Kisspeptin-mediated pathway either through acting as miRNA sponges or working with methylation-associated machinery will be helpful in sharpening the resolution of the pixels of the regulatory network which shapes Kisspeptin-mediated signaling Daha fazlası Daha az

6698 sayılı Kişisel Verilerin Korunması Kanunu kapsamında yükümlülüklerimiz ve çerez politikamız hakkında bilgi sahibi olmak için alttaki bağlantıyı kullanabilirsiniz.

creativecommons
Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.
Platforms