Filtreler
Linear assembly and 3D networks of peptide modified gold nanoparticles

Kalay, Saban | Blanchet, Clement | Culha, Mustafa

Article | 2014 | Turkish Journal of Chemistry38 ( 5 ) , pp.686 - 700

The charge and size of molecules chemically attached to nanoparticles (NPs) play an important role in their interaction behavior in suspensions. Gold nanoparticles (AuNPs) were modified systematically with peptides and the modification was verified with surface-enhanced Raman scattering (SERS). The behavior of the modified AuNPs in suspension and at the liquidsolid interface was monitored using small angle X-ray scattering (SAXS), UV/Vis spectroscopy and dynamic light scattering (DLS) in suspension, and atomic force microscopy (AFM) at the solid liquid interface. It was found that while negatively charged peptide modified AuNPs beha . . .ve very similar to citrate reduced AuNPs due to their negatively charged surface, positively charged peptide modified AuNPs showed significantly different assembly/aggregation properties in suspension. The formation of linear assemblies of positively charged peptide (CKRHSKRHRSKRHSKRHSKRHSKR) modified AuNPs was clearly observed from the AFM analysis of the droplet areas of its colloidal suspension. The combined analyses of data obtained from the employed techniques suggest that the positively charged large peptide modified AuNPs can form linear and 3D-like networks in the suspension. This study reveals important information regarding the surface property dependent behavior of NPs that may help in efforts to build higher structures using NPs as building blocks Daha fazlası Daha az

Design, optimization, and realization of a wire antenna with a 25:1 bandwidth ratio for terrestrial communications

Yeğin, Korkut

Article | 2014 | Turkish Journal of Electrical Engineering and Computer Sciences22 ( 2 ) , pp.371 - 379

Wire antennas can be made wideband if the antenna is loaded with passive elements and connected to a lossless matching network. However, realization of the load component values and matching network can easily become impractical. In this study, using only a surface mount and standard component values, antenna loads and a matching network are optimized using genetic algorithms. The optimized design achieves a 25:1 bandwidth ratio, from 20 MHz to 500 MHz, with a maximum voltage standing wave ratio (VSWR) of 3.5 and minimum system gain of --5 dBi. The antenna system gain at azimuth is taken as the objective function and an exact penalt . . .y function is formulated to take into account the VSWR over the design frequency band. A loaded antenna is built and measured to corroborate the simulations results. The realized antenna is only 0.14 lambda long at 20 MHz Daha fazlası Daha az

Dynamics, stability, and actuation methods for powered compass gait walkers

Şafak, Koray Kadir

Article | 2014 | Turkish Journal of Electrical Engineering and Computer Sciences22 ( 6 ) , pp.1611 - 1624

In this paper, methods to achieve actively powered walking on level ground using a simple 2-dimensional walking model (compass-gait walker) are explored. The walker consists of 2 massless legs connected at the hip joint, a point mass at the hip, and an infinitesimal point mass at the feet. The walker is actuated either by applying equal joint torques at the hip and ankle, by an impulse applied at the toe off, immediately before the heel strike, or by the combination of both. It is shown that actuating the walker by equal joint torques at the hip and ankle on level ground is equivalent to the dynamics of the passive walker on a downh . . .ill slope. The gait cycle for the simplified walker model is determined analytically for a given initial stance angle. Stability of the gait cycle by an analytical approximation to the Jacobian of the walking map is calculated. The results indicate that the short-period cycle always has an unstable eigenvalue, whereas stability of the long-period cycle depends on selection of the initial stance angle. The effect of the torso mass by adding a third link attached at the hip joint is investigated. The torso link is kept in the vertical position by controlling the torque applied to it. The proportional-derivative control law is utilized to regulate the angular position error of the torso link. Using linearized dynamics for this walker, active control is applied to the ankle, which reduces the dynamics of the walker to the passive walker without the torso. The proposed walker is capable of producing stable walking while keeping the torso in an upright positio Daha fazlası Daha az

6698 sayılı Kişisel Verilerin Korunması Kanunu kapsamında yükümlülüklerimiz ve çerez politikamız hakkında bilgi sahibi olmak için alttaki bağlantıyı kullanabilirsiniz.

creativecommons
Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.
Platforms