Filtreler
Footstep and vehicle detection using seismic sensors in wireless sensor network: Field tests

Koç, G. | Yegin, K.

Article | 2013 | International Journal of Distributed Sensor Networks2013

Extensive field tests were carried out to assess the performance of adaptive thresholds algorithm for footstep and vehicle detection using seismic sensors. Each seismic sensor unit is equipped with wireless sensor node to communicate critical data to sensor gateway. Results from 92 different test configurations were analyzed in terms of detection and classification. Hit and false alarm rates of classification algorithm were formed, and detection ranges were determined based on these results. Amplification values of low-intensity seismic data were also taken into account in the analysis. Algorithm-dependent constants such as adaptive . . . thresholds sample sizes were examined for performance. Detection and classification of seismic signals due to footstep, rain, or vehicle were successfully performed. © 2013 Gökhan Koç and Korkut Yegin Daha fazlası Daha az

Footstep and vehicle detection using slow and quick adaptive thresholds algorithm

Koç, G. | Yegin, K.

Article | 2013 | International Journal of Distributed Sensor Networks2013

An algorithm is developed for footstep, vehicle, and rain detection using seismic sensors operating in a wireless sensor network. Each standalone seismic sensor is coupled with a wireless node, and alarm conditions were evaluated at the sensor rather than at the gateway. The algorithm utilizes slow and quick adaptive thresholds to eliminate static and dynamic noise to check for any disturbance. Duration calculation and filters were used to identify the correct alarm condition. The algorithm was performed on preliminary field tests, and detection performance was verified. Footstep alarm condition up to 8 meters and vehicle presence a . . .larm condition up to 50 meters were observed. Presence of rain did not create any alarm condition. Detection based on kurtosis was also performed and shortcomings of kurtosis especially for vehicle detection were discussed, proposed algorithm has minimal load on the sensor board and its data processing unit; thus, it is energy efficient and suitable for wireless sensor alarm networks. © 2013 Gökhan Koç and Korkut Yegin Daha fazlası Daha az

6698 sayılı Kişisel Verilerin Korunması Kanunu kapsamında yükümlülüklerimiz ve çerez politikamız hakkında bilgi sahibi olmak için alttaki bağlantıyı kullanabilirsiniz.

creativecommons
Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.
Platforms