Cancer stem cells in metastasis therapy

Aydemir Çoban, E. | Şahin, Fikrettin

Book Part | 2018 | Advances in Experimental Medicine and Biology1089 , pp.97 - 113

Tumors consists of subpopulation of cells in which each subtype has contributes to tumor progression. Specifically one subtype known as cancer stem cells are associated with the initiation, progression, resistance to conventional therapies and metastasis. Metastasis is leading cause of cancer related deaths. Overall it is important to consider cancer as a whole in which a mutated cell proliferating indefinitely and forming its hierarchy consisting of subgroups with different molecular signatures. To be able to target this disease we need to evaluate every step including initiation, progression, survival, angiogenesis and finally mig . . .ration and repopulation. Cancer stem cells do play vital roles in each step however when metastasis can be stopped or eliminated we talk about saving a life or improving its quality. Considering how deeply these cancer stem like cells affect the tumor life and metastasis it is crucial to develop effective strategies against them. Metastatic cascade can also be directed by membrane derived vesicles specifically exosomes. Several studies show the role of exosomes in mediating cellular migration and pre-metastatic niche formation. During this chapter we wanted to explain in detail how the metastasis occur in tumor and how cancer stem cells contribute into the development of metastatic cascade and possibly suggest therapeutic approaches against cancer stem cells. © Springer Nature Switzerland AG 2018 Daha fazlası Daha az

Mesenchymal Stem Cells as Regulators of Carcinogenesis

Hayal, T.B. | Kıratlı, B. | Şişli, H.B. | Şahin, Fikrettin | Doğan, A.

Book Part | 2019 | Advances in Experimental Medicine and Biology1144 , pp.147 - 166

Mesenchymal Stem Cells (MSCs) are adult stem cells; isolated from various body parts including bone marrow, adipose tissue and dental tissue, have been characterized well and used in regenerative medicine applications. The promising potential of MSCs makes them great candidates in many disorders. It has been well known in the literature that MSCs interact with cancer cells and regulate the carcinogenesis process at different stages. The dual role of MSCs in cancer progression should be clearly identified at the physiological and molecular level to identify clinical potential in cancer treatment. The promoting or suppressive role of . . .MSCs in cancer is controlled by various growth factors, cytokines and chemokines which affect the cell proliferation, angiogenesis and metastasis. Although many studies have been conducted to explore MSC-cancer cell interactions, it is still unclear how MSCs communicate with cancer cells and tumor microenvironment. Further studies are required to investigate secreted factors and paracrine effects, tumor stroma environment, molecular regulators and downstream pathways that are involved in MSC-cancer interaction loop. MSC type, cancer type and stage specific phenotypic and transcriptomic profile changes should be identified in detail to improve clinical use of MSCs in cancer either as a target or as a tool. In the current book chapter, we review the literature to summarize current information about the MSC-cancer cell interactions in terms of soluble factors, angiogenesis, metastasis and drug resistance. The role of MSCs in tumor progression or suppression was discussed based on the current literature. © 2018, Springer Nature Switzerland AG Daha fazlası Daha az

6698 sayılı Kişisel Verilerin Korunması Kanunu kapsamında yükümlülüklerimiz ve çerez politikamız hakkında bilgi sahibi olmak için alttaki bağlantıyı kullanabilirsiniz.

Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.