Discovering the optimum number of processors and the distribution of data on distributed memory parallel computers for a given algorithm is a demanding task. A memetic algorithm (MA) is proposed here to find the best number of processors and the best data distribution method to be used for each stage of a parallel program. Steady state memetic algorithm is compared with transgenerational memetic algorithm using different crossover operators and hill-climbing methods. A self-adaptive MA is also implemented, based on a multimeme strategy. All the experiments are carried out on computationally intensive, communication intensive, and mixed problem instances. The MA performs successfully for the illustrative problem instances. © Springer Science+Business Media, LLC 2007.
Yazar |
Özcan, E. Onbaşioğlu, E. |
Yayın Türü | Article |
Tek Biçim Adres | https://hdl.handle.net/20.500.11831/509 |
Konu Başlıkları |
Distributed memory parallel computers
Memetic algorithms Parallelizing compilers Search methods |
Koleksiyonlar |
Araştırma Çıktıları | Ön Baskı | WoS | Scopus | TR-Dizin | PubMed 02- WoS İndeksli Yayınlar Koleksiyonu 03- Scopus İndeksli Yayınlar Koleksiyonu |
Dergi Adı | International Journal of Parallel Programming |
Cild | 35 |
Dergi Sayısı | 1 |
Sayfalar | 33 - 61 |
Yayın Tarihi | 2007 |
Eser Adı [dc.title] | Memetic algorithms for parallel code optimization |
Yazar [dc.contributor.author] | Özcan, E. |
Yazar [dc.contributor.author] | Onbaşioğlu, E. |
Yayıncı [dc.publisher] | Springer New York LLC |
Yayın Türü [dc.type] | article |
Özet [dc.description.abstract] | Discovering the optimum number of processors and the distribution of data on distributed memory parallel computers for a given algorithm is a demanding task. A memetic algorithm (MA) is proposed here to find the best number of processors and the best data distribution method to be used for each stage of a parallel program. Steady state memetic algorithm is compared with transgenerational memetic algorithm using different crossover operators and hill-climbing methods. A self-adaptive MA is also implemented, based on a multimeme strategy. All the experiments are carried out on computationally intensive, communication intensive, and mixed problem instances. The MA performs successfully for the illustrative problem instances. © Springer Science+Business Media, LLC 2007. |
Kayıt Giriş Tarihi [dc.date.accessioned] | 2020-03-17 |
Yayın Tarihi [dc.date.issued] | 2007 |
Açık Erişim Tarihi [dc.date.available] | 2020-03-17 |
Dil [dc.language.iso] | eng |
Konu Başlıkları [dc.subject] | Distributed memory parallel computers |
Konu Başlıkları [dc.subject] | Memetic algorithms |
Konu Başlıkları [dc.subject] | Parallelizing compilers |
Konu Başlıkları [dc.subject] | Search methods |
Haklar [dc.rights] | info:eu-repo/semantics/closedAccess |
ISSN [dc.identifier.issn] | 08857458 |
Yayının ilk sayfa sayısı [dc.identifier.startpage] | 33 |
Yayının son sayfa sayısı [dc.identifier.endpage] | 61 |
Dergi Adı [dc.relation.journal] | International Journal of Parallel Programming |
Dergi Sayısı [dc.identifier.issue] | 1 |
Cild [dc.identifier.volume] | 35 |
Tek Biçim Adres [dc.identifier.uri] | https://hdl.handle.net/20.500.11831/509 |