Detaylı Arama

İptal
Bulunan: 2 Adet 0.001 sn
- Eklemek veya çıkarmak istediğiniz kriterleriniz için 'Dahil' / 'Hariç' seçeneğini kullanabilirsiniz. Sorgu satırları birbirine 'VE' bağlacı ile bağlıdır.
- İptal tuşuna basarak normal aramaya dönebilirsiniz.
Filtreler
NEDD4 Family of E3 Ubiquitin Ligases in Breast Cancer: Spotlight on SMURFs, WWPs and NEDD4

Butt, G. | Yaylim, I. | Attar, Rukset | Aras, A. | Romero, M.A. | Qureshi, M.Z. | Farooqi, A.A.

Book Part | 2019 | Advances in Experimental Medicine and Biology1152 , pp.365 - 375

Massively parallel sequencing, genomic and proteomic technologies have provided near complete resolution of signaling landscape of breast cancer (BCa). NEDD4 family of E3-ubiquitin ligases comprises a large family of proteins particularly, SMURFs (SMURF1, SMURF2), WWPs and NEDD4 which are ideal candidates for targeted therapy. However, it is becoming progressively more understandable that SMURFs and NEDD4 have “split-personalities”. These molecules behave dualistically in breast cancer and future studies must converge on detailed identification of context specific role of these proteins in BCa. Finally, we provide scattered clues of . . . regulation of SMURF2 by oncogenic miRNAs, specifically considering longstanding questions related to regulation of SMURF1 and WWPs by miRNAs in BCa. SMURFS, WWPs and NEDD4 are versatile regulators and represent a fast-growing field in cancer research and better understanding of the underlying mechanisms will be helpful in transition of our knowledge from a segmented view to a more conceptual continuum. © 2019, Springer Nature Switzerland AG Daha fazlası Daha az

Role of mTORC1 and mTORC2 in Breast Cancer: Therapeutic Targeting of mTOR and Its Partners to Overcome Metastasis and Drug Resistance

Butt, G. | Shahwar, D. | Qureshi, M.Z. | Attar, Rukset | Akram, M. | Birinci, Y. | Farooqi, A.A.

Book Part | 2019 | Advances in Experimental Medicine and Biology1152 , pp.283 - 292

Based on the insights gleaned from decades of research, it seems clear that mechanistic target of rapamycin (mTOR) is an essential signaling node that integrates environmental clues for regulation of cell survival, metabolism and proliferation of the cells. However, overwhelmingly increasing scientific evidence has added a new layer of intricacy to already complicated and versatile signaling pathway of mTOR. Deregulation of spatio-temporally controlled mTOR-driven pathway played contributory role in breast cancer development and progression. Pharmacologists and molecular biologists have specifically emphasized on the identification . . .and development of mTOR-pathway inhibitors. In this chapter we have attempted to provide an overview of the most recent findings related to therapeutic targeting of mTOR-associated mTORC1 and mTORC2 in breast cancer. We have also comprehensively summarized regulation of mTOR and its partners by microRNAs in breast cancer. © 2019, Springer Nature Switzerland AG Daha fazlası Daha az

6698 sayılı Kişisel Verilerin Korunması Kanunu kapsamında yükümlülüklerimiz ve çerez politikamız hakkında bilgi sahibi olmak için alttaki bağlantıyı kullanabilirsiniz.

creativecommons
Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.
Platforms