Image to Music: Cross-Modal Melody Generation Through Image Captioning

Advances in machine learning in recent years have also been seen in computationally creative systems. Interest in machine-generated artifacts paved a way for creative models to evolve as such. But the earlier methods mostly explored a one domain approach and cross-modal learning has stayed relatively unexplored. Thus, the direct mapping between modalities for cross-modal creative models is not fully explored. This work proposes a novel methodology for generating symbolic music through images by directly mapping their features. A CNN encoder and deep stacked LSTM decoder are the base models as the proposed method uses the image captioning approach to map the two domains’ features. The generated music is evaluated quantitatively by using a custom genre classification model and BLEU scores calculations. The qualitative evaluation involves a melody listening test with human evaluators. The results show that the proposed method works well for music generation.

Görüntülenme
87
29.12.2023 tarihinden bu yana
İndirme
2
29.12.2023 tarihinden bu yana
Son Erişim Tarihi
20 Kasım 2024 14:32
Google Kontrol
Tıklayınız
Tam Metin
Tam Metin İndirmek için tıklayın Ön izleme
Detaylı Görünüm
Eser Adı
(dc.title)
Image to Music: Cross-Modal Melody Generation Through Image Captioning
Yazar [Asıl]
(dc.creator.author)
Kaplan, Alper
Yazar Departmanı
(dc.creator.department)
Yeditepe University Graduate School of Social Sciences
Yazar Departmanı
(dc.creator.department)
Yeditepe University Graduate School of Social Sciences Cognitive Science Department
Yayın Tarihi
(dc.date.issued)
2023
Yayın Turu [Akademik]
(dc.type)
preprint
Yayın Türü [Ortam]
(dc.format)
application/pdf
Konu Başlıkları [Genel]
(dc.subject)
Music Generation
Konu Başlıkları [Genel]
(dc.subject)
Melody Generation
Konu Başlıkları [Genel]
(dc.subject)
Cross-Domain Learning
Konu Başlıkları [Genel]
(dc.subject)
Image Captioning
Konu Başlıkları [Genel]
(dc.subject)
Machine Learning
Konu Başlıkları [Genel]
(dc.subject)
Deep Learning
Konu Başlıkları [Genel]
(dc.subject)
Müzik Üretimi
Konu Başlıkları [Genel]
(dc.subject)
Melodi Üretimi
Konu Başlıkları [Genel]
(dc.subject)
Alanlar Arası Öğrenim
Konu Başlıkları [Genel]
(dc.subject)
Resim Altyazısı
Konu Başlıkları [Genel]
(dc.subject)
Makine öğrenimi
Konu Başlıkları [Genel]
(dc.subject)
Derin Öğrenme
Yayıncı
(dc.publisher)
Yeditepe University Academic and Open Access Information System
Dil
(dc.language.iso)
eng
Özet Bilgisi
(dc.description.abstract)
Advances in machine learning in recent years have also been seen in computationally creative systems. Interest in machine-generated artifacts paved a way for creative models to evolve as such. But the earlier methods mostly explored a one domain approach and cross-modal learning has stayed relatively unexplored. Thus, the direct mapping between modalities for cross-modal creative models is not fully explored. This work proposes a novel methodology for generating symbolic music through images by directly mapping their features. A CNN encoder and deep stacked LSTM decoder are the base models as the proposed method uses the image captioning approach to map the two domains’ features. The generated music is evaluated quantitatively by using a custom genre classification model and BLEU scores calculations. The qualitative evaluation involves a melody listening test with human evaluators. The results show that the proposed method works well for music generation.
Kayıt Giriş Tarihi
(dc.date.accessioned)
2023-12-28
Açık Erişim Tarihi
(dc.date.available)
2023-12-28
Haklar
(dc.rights)
Yeditepe University Academic and Open Access Information System
Erişim Hakkı
(dc.rights.access)
Open Access
Telif Hakkı
(dc.rights.holder)
Unless otherwise stated, copyrights belong to Yeditepe University. Usage permissions are specified in the Open Access System, and "InC-NC/1.0" and "by-nc-nd/4.0" are as stated.
Telif Hakkı Url
(dc.rights.uri)
http://creativecommons.org/licenses/by-nc-nd/4.0
Telif Hakkı Url
(dc.rights.uri)
https://rightsstatements.org/page/InC-NC/1.0/?language=en
Açıklama [Genel]
(dc.description)
Final published version
Açıklama [Not]
(dc.description.note)
Note: This preprint reports new research that has not been certified by peer review and should not be used as established information without consulting multiple experts in the field.
Tanım Koleksiyon Bilgisi
(dc.description.collectioninformation)
This item is part of the preprint collection made available through Yeditepe University library. For your questions, our contact address is openaccess@yeditepe.edu.tr
Yazar [KatkıdaBulunan]
(dc.contributor.author)
Goularas, Dionysis
Yazar [KatkıdaBulunan] Kurum
(dc.contributor.institution)
Yeditepe University Graduate School of Natural and Applied Sciences
Yazar [KatkıdaBulunan] Kurum
(dc.contributor.institution)
Yeditepe University Graduate School of Natural and Applied Sciences Computer Engineering Department
Yazar Katkı Sağlayan OrcID
(dc.contributor.authorOrcid)
0000-0002-4802-2802
Analizler
Yayın Görüntülenme
Yayın Görüntülenme
Erişilen ülkeler
Erişilen şehirler
6698 sayılı Kişisel Verilerin Korunması Kanunu kapsamında yükümlülüklerimiz ve çerez politikamız hakkında bilgi sahibi olmak için alttaki bağlantıyı kullanabilirsiniz.

creativecommons
Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.
Platforms